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Abstract The late-phase dewetting process of nanoscopic thin polymer films on hydrophobized substrates using
some recently derived lubrication models that take account of large slippage at the polymer-substrate interface is
studied. The late phase of this process is characterized by the slow-time coarsening dynamics of arrays of droplets
that remain after rupture and the initial dewetting phases. For this situation a reduced system of ordinary differential
equations is derived from the lubrication model for large slippage using asymptotic analysis. This extends known
results for the no-slip case. On the basis of the reduced model, the role of the slippage as a control parameter for
droplet migration is analysed and several new qualitative effects for the coarsening process are identified.

Keywords Coarsening · Fluid dynamics · Lubrication models · Wall slippage

1 Introduction

A liquid polymer film of nanometer thickness interacting with a hydrophobically coated solid substrate is suscep-
tible to instability due to small perturbations of the film profile. Typically such films rupture, thereby initiating a
complex dewetting process [1–5]. The influence of intermolecular forces plays an important part in the rupture
and subsequent dewetting process; see e.g. [6–8] and references therein. Due to the small thickness of the film, the
competition between the long-range attractive van der Waals and short-range Born repulsive intermolecular forces
reduces the unstable film to an even thinner layer of thickness ε that connects the evolving patterns and is closely
related to the minimum of the corresponding intermolecular potential, i.e., the film settles into an energetically more
favorable state [9,10]. The early stages of this process are associated with the formation of regions of this minimal
thickness, bounded by moving rims that connect to the undisturbed film and eventually destabilize [11–13].

In this study we are interested in the long-time dewetting process, which originates in the breaking up of the evolv-
ing patterns into small droplets and is characterized by its subsequent slow-time coarsening dynamics, which has
been observed and investigated experimentally in [14,15]. Within a different context of phase separation of binary
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alloys, coarsening dynamics is a well-known widely studied process and is typically described by the Cahn–Hilliard
equation [16]. For the late phases of this process the existence of metastable solutions were first shown in [17], and
after that reduced ODE models have been derived and investigated in [18–20] that allow to determine properties
such as coarsening rates, which can be time-consuming using the underlying partial differential equations. These
studies have recently been extended to describe phase separation under the influence of an external driving field in
[21,22]. Within the context of thin liquid films one of the first studies of the coarsening dynamics can be found in
[23] and [24]. These authors consider the one-dimensional no-slip lubrication model for the profile h(x, t),

∂t h = −∂x

(
h3∂x (∂xx h −�(h))

)
(1.1)

and, using asymptotic methods, derive a reduced model that is able to describe the slow-time coarsening process
for large arrays of droplets, including mechanisms such as collapse as well as collisions of droplets, and predict
their coarsening rate.

Let us recall that the high order of the lubrication equation (1.1) is a result of the contribution from surface
tension at the free boundary, reflected by the linearized curvature term ∂xx h. A further contribution to the pressure
arises from the intermolecular forces and is denoted by �(h). A commonly used expression is given by

�(h) = 1

ε

[( ε
h

)n −
( ε

h

)m+n−1
]
, (1.2)

with n = 3 and m = 2 being typical values. It can be written as a derivative of the potential function U (h),

U (h) = 1

3

( ε
h

)m+n−2 − 1

2

( ε
h

)n−1
, (1.3)

where the minimal thickness between the droplets is of order 0 < ε � 1.
Recently, it has been shown experimentally and theoretically that the early stages of the dewetting process and

the evolving morphology depend markedly on the magnitude of the effective slip length, which can be of the size of
the height of the liquid film or even larger for nanoscale systems [13,25–28]. In order to understand this behavior,
closed-form lubrication models over a wide range of slip lengths were derived in [29,30] from the underlying equa-
tions for conservation of mass and momentum, together with boundary conditions for the tangential and normal
stress, as well as the kinematic condition at the free boundary, impermeability and Navier-slip condition at the
liquid–solid interface.

In the context of the physical application of polymer melts dewetting from a substrate that is hydrophobically
coated with polymer brushes, we assume that the complex microscopic dynamics involved here, can be described
by an effective Navier-slip condition

u∗ = b∗ ∂z∗u∗ at z∗ = 0 (1.4)

on the macroscopic, continuum level, given here in dimensional form. It states that the lateral velocity u∗ is pro-
portional to the shear rate ∂z∗u∗, with proportionality constant b∗, the effective slip-length parameter, having the
dimension of a length. In the rest of the paper it nondimensionalized by the typical height h∗ of the undisturbed
film b∗ = h∗ b.

Asymptotic arguments, based on the magnitude of the slip length show that within a lubrication scaling there are
two distinguished limits [29]:

These are the well-known weak-slip model

∂t h = −∂x (M(h)∂x (∂xx h −�(h))), (1.5)

where M(h) = h3 + bh2 with b denoting the slip-length parameter, and the strong-slip model

Re (∂t u + u∂x u) = 4

h
∂x (h∂x u)+ ∂x (∂xx h −�(h))− u

βh
, (1.6a)

∂t h = − ∂x (hu), (1.6b)

respectively. Here, u(x, t) denotes the velocity in the lateral direction. The slip-length parameters b and β are related
by orders of magnitude via b ∼ ν2β, where the parameter ν with 0 < ν � 1 refers to the vertical to horizontal scale
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Coarsening with slip 273

separation of the thin film. The terms Re (∂t u + u∂x u), with Re denoting the Reynolds number, and (4/h)∂x (h ∂x u)
are the inertial and Trouton viscosity terms, respectively.

Additionally, the weak-slip and the strong-slip models contain as limiting cases three further lubrication models.
One is the no-slip model which is obtained when we set b = 0 in the weak-slip model. The second one is obtained
from the strong-slip model in the limit β → ∞ and describes the dynamics of suspended free films; see e.g. [31].
For the third limiting case derived in [29] the slip-length parameter βI is of an order of magnitude lying in between
those that lead to the weak and the strong-slip model, i.e., b � βI � β. The corresponding intermediate-slip model
is given by

∂t h = −∂x

(
h2∂x (∂xx h −�(h))

)
. (1.7)

It can be obtained by rescaling time in (1.5) by b and letting b → ∞ or by rescaling time and the horizontal velocity
by β and taking the limit β → 0.

In view of the above developments, we would like to understand the effects of slippage during the late stages
of the dewetting process, such as the details of coarsening mechanisms. Moreover, we would like to know if it is
possible to obtain reduced models to answer these questions. Hence, in this paper we will focus our investigations
on the lubrication models for the slip-regimes, (1.7) and (1.6a)–(1.6b). It turns out that in the case of the intermedi-
ate-slip model (1.7) the derivation of a corresponding reduced ODE model for the position and pressure of arrays
of droplets can be obtained by following the ideas in [23], so that we only briefly summarize our results and focus
here mainly on the strong-slip model.

Additionally, using essentially a mixture of the gradient flow structure approach and asymptotic analysis, the
one- as well as the two-dimensional case for M(h) = hq , q > 0 has recently been considered in [32]. Within the
context of thin liquid films the relevant case here is M(h) = h2, the intermediate-slip model, apart form the more
frequently considered no-slip case when M(h) = h3. We note that, within the different context of Darcy’s equation,
also the case M(h) = h was considered in [33], where coarsening rates on the basis of the gradient flow structure
of the corresponding equation were derived. Moreover, for this case they showed that the analysis can be made
rigorous. One focus of the recent work [32] concerned migration of the droplets and its underlying causes, where
results reported in [34] on the relation between directions of the motion and of the mass flux were discussed and
clarified, i.e., that indeed the direction of the migration of droplets is opposite to the applied mass flux. We also
like to note at this point that, in light of the derivation of the lubrication models for various slip regimes as given in
[29], the no- and intermediate-slip lubrication equations arise from different balances of the underlying governing
equations. As a consequence, when comparing results for the two models, as done in [32, Appendix D], the actual
physical interpretation of properties such as migration velocities needs to take into account the different time scales
of these regimes.

Finally, in a recent paper [35] the results of [23] were extended to the two-dimensional case and a comparison with
an alternative derivation from [32] were given. A very interesting extension that includes gravity, which becomes
important as some droplets get larger, is given and analysed in [36].

In this article, we begin with the derivation of the steady states for the strong-slip model and its limiting cases in
Sect. 2. In Sect. 3.2 for the one-dimensional strong-slip model with sufficiently small inertial terms we then derive
a reduced model. In Sect. 3.3 we derive an approximation for the fluxes between droplets in an array. In Sect. 4.3
(Proposition 4.1) we prove that, in contrast to the no- and intermediate-slip cases, which were treated in [32] for
any mobility hq , q > 0, in the strong-slip case droplets do not necessarily migrate in the direction opposite to the
applied flux. There is a critical value of slippage β = βcrit above which droplets migrate in the same direction as
the flux. As a further consequence of that we find that collisions of two droplets are possible for some range of slip
parameter β in the model (1.6a)–(1.6b), while for the models (1.1), (1.5) and (1.7) it was shown in [24,32] that
collisions involve at least three droplets.

Section 4.4 is devoted to the resulting coarsening patterns for increasing slippage. Here, we identified another new
effect in the strong-slip case. For the models (1.1) and (1.7) it was shown in [32] that the collision component of the
coarsening process is comparable with the component for collapse only in the case of (1.1), while it is negligible for
(1.7). For the strong-slip model this component increases when β increases and becomes the dominant component
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274 G. Kitavtsev, B. Wagner

of the coarsening process. In the Sect. 4.5 we make numerical simulations of coarsening rates for the strong-slip
case using the corresponding reduced model and find that their slope changes with the slip-length β > 0.

2 Equilibrium and near-equilibrium solutions

2.1 Equilibrium solutions

Let us briefly revisit the initial-boundary-value problem for the weak-slip model (1.5) on an interval [−L , L]. We
impose the following boundary conditions:

∂xxx h = 0, and ∂x h = 0 at x = ±L , (2.1)

which incorporate zero flux at the boundary and as a consequence imply conservation of mass law (2.2):

h̃ = 1

2L

+L∫

−L

h(x, t) dx, ∀t > 0, (2.2)

where h̃ = const is the average of the height profile. For these boundary conditions it has been proved in [10]
that (1.5) has a unique strong positive solution, for the initial data h(0, x) > 0 and h(0, x) ∈ H1(−L , L). For our
subsequent analysis it will be useful to summarize their results on equilibrium solutions ([10, 23]) here:

Theorem 2.1 Equation (1.5) under boundary conditions (2.1) has a family of positive nonconstant steady state
solutions h̄(x, P, L) parameterized by the constant pressure P and given by the solution of

P = �
(
h̄
) − ∂xx h̄, (2.3a)

0 = ∂x h̄(−L) = ∂x h̄(L). (2.3b)

Moreover, phase-plane analysis shows that for fixed value P ∈ (0, Pmax) the ODE (2.3a) has a family of periodic
solutions h̄(x, P, L) parameterized by the least period T = 2L that is nested into a homoclinic loop h̄(x, P). Every
periodic solution h̄(x, P, L) restricted to the interval [−L , L] gives a solution of (2.3a)–(2.3b). And vice versa
every solution of (2.3a)–(2.3b) can be extended to the periodic solution h̄(x, P, L) with the least period T = 2L .

The asymptotics of the homoclinic solution h̄(x, P) were derived in [23]. If we denote the minimum and the
maximum of the homoclinic solution by hmin(P) and hmax(P), respectively, then the minima and maxima of all
periodic solutions are bounded by these values. The smallest real root of the algebraic equation �(h) = P is hmin.
Hence, expanded in ε, it is of the form,

hmin = ε + ε2 P + O(ε3). (2.4)

The elliptic center point hc(P) of (2.3a) is the other real root of �(h) = P and has the asymptotics,

hc = ε(εP + o(εP))−1/3. (2.5)

Once hmin(P) is determined, the first integral of (2.3a) can be written as

1

2

(
dh̄

dx

)2

= R(h̄), (2.6)

where

R(h̄) = U
(
h̄
) − U (hmin)− P(h̄ − hmin). (2.7)

At the maximum h̄x = 0 and hence hmax is determined by the condition R(hmax) = 0 and its asymptotics is

hmax = −U (ε)

P
+ O(ε). (2.8)
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Coarsening with slip 275

More detailed asymptotic analysis (see [23]) shows that a stable steady-state solution on [−L , L], i.e., a one-
dimensional droplet, can be described by a parabola connected to a thin layer. Then, hmin gives approximately the
thickness of this thin layer and hmax is the peak of the droplet.

For the boundary-value problem for the strong-slip model (1.6a)–(1.6b) on the interval [−L , L] we put velocities
(or fluxes) at the boundary to zero

u = 0 at x = ±L . (2.9)

i.e., we require conservation of mass (2.2). For the profile h(x, t) we assume that

∂x h = 0 at x = ±L (2.10)

as before.

Theorem 2.2 Steady-state solutions of the system (1.6a)–(1.6b) with the boundary conditions (2.9)–(2.10) with
positive height profile exist and are given by the solutions of (2.3a)–(2.3b) and identically zero velocity profile
ū ≡ 0.

Proof The steady states of (1.6a)–(1.6b) are described by

Re hu ∂x u = 4∂x (h∂x u)+ h ∂x (∂xx h −�(h))− u

β
, (2.11a)

0 = −∂x (hu). (2.11b)

From (2.11b) and (2.9) it follows that hu ≡ 0. Take any stationary solution [h(x), u(x)] with positive height
profile. If such a solution exists it follows necessarily

u ≡ 0 for all x ∈ [−L , L]. (2.12)

Substituting (2.12) in (1.6a) one obtains necessarily that h(x) is a solution of (2.3a)–(2.3b) which exists when
P ∈ (0, Pmax) as was shown in [10]. Vice versa, any solution of (2.3a)–(2.3b) determines a stationary solution with
identically zero velocity profile for (1.6a)–(1.6b) with the boundary conditions (2.9)–(2.10). 	

Remark 2.1 The stationary positive non-constant height profile for (1.6a)–(1.6b) is a solution h̄(x, P, L) of (2.3a)–
(2.3b) and hence the asymptotics (2.4)–(2.8) stated for steady states of (1.5) holds for it as well.

2.2 Near-equilibrium solutions

It is well-known that the driving forces that underly the initial dewetting scenario of a thin film, from rupture towards
formation of complex fluid patterns, are intermolecular forces. This has been shown in the framework of the no-slip
or weak-slip lubrication models; see e.g. [7]. The intermediate- and strong-slip models show similar phases of the
initial dewetting scenario, where now interfacial slip has an important influence on the morphology of the resulting
patterns and the time scale on which they evolve, see [29,37,38] for a detailed analysis. However, as has been dis-
cussed in [23], intermolecular forces are also important in the late phases when arrays of near-equilibrium droplets
have formed, connected by a thin layer whose height is determined by the competition between van der Waals
attractive and Born repulsive forces. Here, the small flux across this layer plays an important role in the coarsening
dynamics of these arrays of droplets, where the central part of each droplet is nearly an equilibrium solution we
have just discussed in the previous paragraph.

When Re is sufficiently small, two components of the coarsening regime can be identified [24,32], namely col-
lapse and collision. One can qualitatively explain the driving effects for collapse and collision using the presence
of a generalized gradient flow structure. As it is found in [10] the functional

E(h) =
∫

U (h)+ ∂2
x h

2
dx (2.13)

is a Lyapunov functional for (1.5) with the boundary conditions (2.1), where U (h) is given by (1.3). Analogously
we prove:

123



276 G. Kitavtsev, B. Wagner

Proposition 2.1 A functional

E(u, h) =
∫

U (h)+ Re

2
hu2 + ∂2

x h

2
dx (2.14)

is a Lyapunov functional for the system (1.6a)–(1.6b) with boundary conditions (2.9)–(2.10) where U (h) is given
by (1.3).

Proof To show that E(h, t) is an energy functional that decreases on the positive solutions of (1.6a)–(1.6b) we
establish that dE/dt ≤ 0.
We note that by integration by parts and using (2.10), we have

dE

dt
= Re

∫
uh ∂t u dx +

∫
(�(h)− ∂xx h) ∂t h dx + Re

∫
u2

2
∂t h dx . (2.15)

Substitution of ∂t h from (1.6b), integration by parts of the second and third terms and noting the velocity boundary
conditions result in

dE

dt
= Re

∫
uh ∂t u dx +

∫
hu ∂x (�(h)− ∂xx h) dx + Re

∫
(hu)u ∂x u dx . (2.16)

Recall that from (1.6a)

− ∂x (∂xx h −�(h)) = −Re (∂t u + u∂x u)+ 4

h
∂x (h∂x u)− u

βh
. (2.17)

Using this in (2.16) we obtain

dE

dt
=

∫ (
4∂x (h∂x u) u − u2

β

)
dx . (2.18)

Integration by parts of the first term and noting (2.9) gives

dE

dt
= −

∫
4h (∂x u)2 dx −

∫
u2

β
dx ≤ 0, (2.19)

provided h(x, t) > 0, ∀t > 0. 	

Lyapunov functionals (2.13) and (2.14) also induce a generalized gradient flow structure for (1.7) and (1.6a)–

(1.6b), respectively. During the coarsening process in an array of droplets driven by (1.6a)–(1.6b) the energy (2.14)
dissipates with the rate given by (2.19). As discussed in detail in [23], in such a framework the collapse component
of the coarsening process is driven by the dissipation of energy because the energy of two droplets before collapse
is greater than the energy of the remaining one after the collapse of one droplet plus its surrounding thin layer. In
turn, migration of droplets can be explained by the presence of the Raleigh principle associated with the generalized
gradient structure. It implies the non-zero flux (or velocity) profile between droplets in an array and in fact gives
rise for the motion of droplets and consequently for the collision component of the coarsening process. The same
description of the two coarsening effects hold for the intermediate-slip case (1.7) with (2.13).

3 Dimension-reduced model for droplet dynamics

3.1 The intermediate-slip case, summary

The description of the slow motion of near-equilibrium droplets in terms of the equilibrium solutions, like those
we have just discussed, with parameters characterizing the position of the center of the droplet and its pressure that
vary on that slow time scale, was first given in [23] for the no-slip model. Based on their work we briefly illustrate
the approach for the intermediate-slip model.
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Coarsening with slip 277

We consider the evolution of one droplet governed by the model (1.7) on the interval [−L , L] at the boundary
at which the fluxes

J (−L) = J−, J (+L) = J+, (3.1)

are imposed, where J± = σ J̃± and σ � 1. The fourth-order boundary-value problem is completed by requiring
two further boundary conditions

hx (−L) = 0, hx (L) = 0. (3.2)

Since the flux is very small, i.e., of order σ � 1, one can assume the solution h(x, t) (at every fixed time t) to
have the form of a perturbed equilibrium droplet solution h̄, initially centered at x = X0, corresponding to an initial
pressure P0, i.e., h(x, 0) = h̄(x − X0, P0), and evolving on the slow-time scale

τ = σ t. (3.3)

Following [23] we make the ansatz

h(x, τ ) = h̄ (x − X (τ ), P(τ ))+ σh1(x, τ )+ O(σ 2), (3.4)

where the position X (τ ) and the pressure P(τ ) of the droplet vary slowly in time and obtain from (1.7) to leading
order in σ

− ∂x h̄
dX

dτ
+ ∂P h̄

dP

dτ
= Lh1, (3.5)

where L is the differential operator

Lh = ∂x

(
h̄2∂x

[
�′(h̄)h − ∂xx h

])
, (3.6)

and the perturbation h1 satisfies boundary conditions (3.2) and flux conditions

− h̄2 (
∂x

[
�′(h̄)h1(−L)− ∂xx h1(−L)

]) = J̃−, −h̄2 (
∂x

[
�′(h̄)h1(L)− ∂xx h1(L)

]) = J̃+. (3.7)

We introduce then formally the adjoint operator L∗,

L∗ψ = (�x (h)− ∂xx )
[
∂x (h̄

2∂xψ)
]
, (3.8)

the kernel of which is spanned by two functions

ψ1(x) = 1, and ψ2(x) =
x∫

0

h̄(x ′)− hmin

h̄(x ′)2
dx ′. (3.9)

Using (3.9) and a suitable change of variables so that the linear problem with nonhomogeneous boundary condi-
tions (3.7) is transformed to one with homogeneous boundary conditions, one can impose two necessary conditions
(similar to that used in the Fredholm alternative) on the solvability of (3.5), which result in the system of ODEs for
the pressure and position of the droplet, written in the original time scale,

dP

dt
= CP (P)(J+ − J−),

dX

dt
= −CX (P)(J+ + J−), (3.10)

where

CP (P) = 1

− ∫ L
−L ∂P h̄dx

. (3.11)

The only difference to the no-slip case described in [23] is found in the motion coefficient

CX (P) =
∫ L
−L

h̄−hmin
h̄2 dx

∫ L
−L

(h̄−hmin)
2

h̄2 dx
. (3.12)

In Appendix we show that (3.11) and (3.12), along with coefficients for the dimension-reduced model for the
strong-slip case in the next section, converge and do not depend on the droplet position X (t).
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3.2 Strong-slip case

We again describe the evolution of one droplet on the interval [−L , L] governed now by the system (1.6a)–(1.6b).
We restrict our derivation to the regime where

σ 2Re � 1, (3.13)

i.e., for sufficiently small Re numbers in (1.6a)–(1.6b) and assume again the evolution of the single droplet occurs
on a slow time scale τ (3.3) and can be parameterized by the slow evolution of its pressure P(τ ) and position X (τ ).
We make the following asymptotic ansatz:

τ = σ t (3.14a)

h(x, t) = h̄(x − X (τ ), P(τ ))+ σh1(x, τ )+ O(σ 2), (3.14b)

u(x, t) = σu1(x, τ )+ O(σ 2). (3.14c)

At the boundary of the interval we impose flux conditions, which can be written in terms of velocity at the
boundary:

u(±L) = σu±. (3.15)

In this case we define the fluxes J± imposed on the droplet as,

J± = σhminu±. (3.16)

After substitution of (3.14b), (3.14c) in (1.6a), (1.6b) and noting (3.13) to the first order in σ we have (in matrix
notation)[

0

−∂x h̄ dX
dτ + ∂P h̄ dP

dτ

]
= L

[
h1

u1

]
, (3.17)

where L is the differential operator

L
[

h
u

]
=

[
4 ∂x (h̄∂x u)+ h̄∂x (∂xx h − h�′(h̄))− u

β

−∂x (h̄u)

]
. (3.18)

The velocity correction term u1(x, t) satisfies the leading order of (3.15)

u1(±L) = u±. (3.19)

Formally, the adjoint operator to L is

L∗
[

g
ψ

]
=

[
4∂x (h̄∂x g)− g

β
+ h̄∂xψ(

�′(h̄)− ∂xx
)
∂x (h̄g)

]
. (3.20)

It is easy to see that the kernel of the adjoint operator is spanned by two functions,[
0
1

]
=:

[
g1

ψ1

]
(3.21)

and⎡
⎣

h̄−hmin
h̄∫ x

0
h̄−hmin
βh̄2 − A(h̄, ∂x ′ h̄, ∂x ′x ′ h̄)dx ′

⎤
⎦ =:

[
g2

ψ2

]
, (3.22)

where

A(h̄, ∂x h̄, ∂xx h̄) = 4 hmin
h̄∂xx h̄ − ∂x h̄2

h̄3
. (3.23)

Again using (3.21)–(3.22) and transformation of the nonhomogeneous boundary conditions (3.19) to a problem
with homogeneous boundary conditions, one can impose two necessary conditions on the solvability of (3.5) which
result in the ODEs (3.32a)–(3.32b). Our derivation below is equivalent to this procedure.
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Coarsening with slip 279

To derive an equation for P(τ )we multiply the second line in the matrix equation (3.17) byψ1 and integrate over
the interval [−L , L]. We can make use of the fact that ∂x h̄ is an odd function and

∫ L
−L ∂x (u1h̄) dx = hmin(u+ −u−).

This leads us to the equation

dP

dτ
= −

⎛
⎝

L∫

−L

∂ p̄ h̄dx

⎞
⎠

−1

hmin(u+ − u−), (3.24)

which, written in the original time scale, coincides with (3.32a).
Similarly, we multiply the second line in the matrix equation (3.17) byψ2 and integrate over the interval [−L , L].

Again using odd or even symmetry we get

− dX

dτ

L∫

−L

ψ2 ∂x h̄ dx = −
L∫

−L

ψ2 ∂x (h̄u1) dx, (3.25)

which transforms to

dX

dτ
=

∫ L
−L ψ2∂x (h̄u1)dx
∫ L
−L ψ2∂x h̄ dx

. (3.26)

Next we calculate integrals in the denominator and numerator of (3.26). Denote the numerator by

I1 =
L∫

−L

ψ2 ∂x (h̄u1) dx . (3.27)

Then, since ψ2(x) is an odd function and using (3.22)

I1 = [
h̄u1ψ2

]
x=±L −

L∫

−L

(h̄u1)∂xψ2 dx . (3.28)

Using (3.23), integrate by parts and note that ∂x h̄|x=±L = 0, this is equal to

I1 = hminψ2(L)(u+ + u−)−
L∫

−L

u1

(
h̄ − hmin

βh̄
− h̄ A

)
dx

= hminψ2(L)(u+ + u−)−
L∫

−L

u1

(
h̄ − hmin

βh̄

)
dx +

[
∂x h̄ hmin

h̄
u1

]

x=±L
− 4

L∫

−L

∂x u1 ∂x h̄ hmin

h̄
dx .

Since the third term is zero, making use of the first line from (3.17) and because h̄|x=±L = hmin we get

I1 = hminψ2(L)(u+ + u−)−
L∫

−L

u1

(
h̄ − hmin

βh̄

)
dx − [

4∂x u1(h̄ − hmin)
]

x=±L +
L∫

−L

h̄ − hmin

h̄
4∂x (h̄u1) dx

= hminψ2(L)(u+ + u−)+
L∫

−L

h̄ − hmin

h̄

(
4∂x (h̄∂x u1)− u1

β

)
dx

= hminψ2(L)(u+ + u−)−
L∫

−L

(h̄ − hmin)∂x
(
∂xx h1 −�′(h̄)h1

)
dx .
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Integrating by parts twice, where we note that ∂x h̄|x=±L = 0 and making use of the even property (∂xx h̄h1)|x=±L =
0, we obtain finally

I1 = hminψ2(L)(u+ + u−)+
L∫

−L

∂x h̄
(
∂xx h1 −�′(h̄)h1

)
dx

= hminψ2(L)(u+ + u−)+
L∫

−L

h1
(
∂xx −�′(h̄)

)
∂x h̄ dx = hminψ2(L)(u+ + u−). (3.29)

Hence, using odd symmetry of ψ2(x), we can write

L∫

−L

ψ2 ∂x (h̄u) dx = 1

2

⎛
⎝

L∫

−L

h̄ − hmin

βh̄
− h̄ A dx

⎞
⎠ hmin(u+ + u−). (3.30)

The denominator of (3.26) can be written as

I2 :=
L∫

−L

ψ2 ∂x h̄dx = −
L∫

−L

h̄ ∂xψ2 dx + hmin(ψ2(L)− ψ2(−L)) = −
L∫

−L

(h̄ − hmin) ∂xψ2 dx . (3.31)

Using (3.30) and (3.31) where ψ2(x) is given in (3.22), the evolution equation for the droplet (3.26) written in
original time scale, finally takes form

dP

dt
= CP (P) (J+ − J−), (3.32a)

dX

dt
= − CX (P) (J+ + J−) (3.32b)

for its pressure P(t) and position X (t), where

CP (P) = 1

− ∫ L
−L ∂P h̄ dx

, (3.33)

and the mobility coefficient

CX (P) =
∫ L
−L

(
h̄−hmin

h̄2 − β A(h̄, ∂x h̄, ∂xx h̄)
)

dx

2
∫ L
−L

(
(h̄−hmin)

2

h̄2 − β A(h̄, ∂x h̄, ∂xx h̄)(h̄ − hmin)

)
dx
. (3.34)

The coefficients (3.33)–(3.34) depend on the pressure P through the given droplet stationary height profile
h̄(x, P, L), its minimum hmin = minx h̄(x, P, L) and the function A(h̄, ∂x h̄, ∂xx h̄) defined in (3.23). Next, we
provide an asymptotic approximation for the fluxes J± between droplets in an array and finally, arrive to the cou-
pled system of ODEs for them. We observe that (3.34) differs from the corresponding coefficients for no-slip and
intermediate slip and depends now on the slip parameter β.

In Appendix we show convergence of the integrals in (3.34). Moreover, we give asymptotics for them in a limit
P, ε → 0, which in particular implies that the denominator in (3.34) is positive for all β ≥ 0, but the numerator
can change its sign with β. We remark that for the case of negligible Trouton viscosity (when β → 0) the function
βA(h̄, ∂x h̄, ∂xx h̄) → 0 and we recover the model (3.10)–(3.12) for the intermediate-slip model. On the other hand,
when β → ∞, we obtain a model for suspended films for which the coefficient (3.34) is replaced by

CX (P) = −
∫ L
−L A(h̄, ∂x h̄, ∂xx h̄) dx

2
∫ L
−L A(h̄, ∂x h̄, ∂xx h̄)(h̄ − hmin) dx

. (3.35)
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3.3 Approximation for the fluxes between droplets

In order to make use of the reduced models to describe the coarsening process of a whole array of droplets, we
derive here asymptotic expressions for the fluxes that a droplet experiences due to its neighboring droplets, again
for the intermediate-slip model (1.7) and the strong-slip model (1.6a)–(1.6b).

3.3.1 Intermediate-slip case

As for the no-slip case [23], we note first that the fluxes occur through the thin film of height h = O(ε), connecting
the droplets, which are assumed to have a typical distance of 1/δ. Similarly, we obtain expression for the fluxes in
the thin film by first scaling the variables to this inner region as follows

z = δx, H = h

ε
, τ = σ t, (3.36)

where σ was introduced in (3.14a). For the intermediate-slip case it can be taken as

σ = ε2δ. (3.37)

Substitution of (3.36) in (1.7) yields

ε2δ−1 Hτ = ∂z

(
H2∂z(U ′(H)− ε2δ2∂zz H)

)
, (3.38)

with U(H) := U (h/ε). Hence, assuming that ε2/δ � 1, to the leading order the quasi stationary problem is

0 = ∂zz[V(H)], (3.39)

where V(H) is defined by

dV
dH

= H2 d2U
d2 H

which is, in unscaled variables
dV

dh
= h2 d2U

dh2 , (3.40)

and V (h) = εV(h/ε), so that the flux between droplets is J = −∂x V (h).
Solving the outer boundary-value problem ∂xx V (h) = 0 with V = V (hmin) at the apparent contact line, i.e.,

where the droplet merges into the thin film, we observe that as in [23] for the no-slip case, also here we obtain that
the flux between two neighboring droplets, labeled by k and k + 1, is constant and given by their positions and
pressures as

Jk,k+1 = − V (hmin(Pk+1))− V (hmin(Pk))

[Xk+1 − w(Pk+1)] − [Xk + w(Pk)] . (3.41)

The main difference with the no-slip case is the difference in the mobility and hence the regime of quasistatic
behavior. Furthermore, in contrast to (1.1), for the intermediate-slip we now have

V = 3ε2

h
− 2ε3

h2 . (3.42)

3.3.2 Strong-slip case

As we did throughout the paper, we neglect the inertial terms in the strong-slip model to obtain

0 = 4

h
∂x (h∂x u)+ ∂x (∂xx h −�(h))− u

βh
, (3.43a)

∂t h = − ∂x (hu). (3.43b)

In addition to (3.36) we set W = γ u, i.e., we introduce the scalings for the inner variables as

z = δx, H = h

ε
, τ = σ t, W = γ u. (3.44)
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The equations in these inner scalings are

0 = εδ

γ

4

H
∂z(H∂z W )+ ∂z

(
ε2δ2∂zz H − U ′(H)

)
− 1

δγ

W

βH
, (3.45a)

σγ

δ
∂τ H = − ∂z (H W ), (3.45b)

where

�(ε H) = 1

ε

(
1

H

)n
[

1 −
(

1

H

)m−1
]

= 1

ε
U ′(H). (3.46)

In the film between the droplets the most important term is the intermolecular potential U and surface tension
should be negligible. Additionally, as for the no-slip and intermediate slip cases, we consider only the situation
with constant flux, i.e., in the following balances of terms we assume that the rate of change in H vanishes, so that
σγ/δ � 1. If we assume that the fluxes between the droplets will set the time scale, then, since

J = uh = ε

γ
WH we get with J = σJ and J = WH the relation γ = ε

σ
. (3.47)

This means, that requiring constant flux amounts to the regime ε/δ � 1. We consider here the case, where the
slip term enters the leading-order equation, i.e.,

1

δγ
∼ 1 so that σ = εδ, (3.48)

and the Trouton viscosity and the surface-tension terms, which are then O(εδ2) and O(ε2δ2), respectively, are
neglected. The leading-order equations for this case are

0 = βH2∂z
(U ′(H)

) + H W, (3.49a)

0 = ∂z (H W ), (3.49b)

This implies that

HW = −βH2∂z
(U ′(H)

)
(3.50)

and used in (3.49b) we obtain

0 = ∂z

(
H2∂z

(U ′(H)
))
. (3.51)

If we define V(H) as in the intermediate-slip case and note that in outer scales

∂x V = dV

dh
∂x h = h2 d2U

dh2 ∂x h, (3.52)

we can express the flux as

J = uh = −βh2 d2U

dh2 ∂x h = −β∂x V . (3.53)

Integrating, we can solve for V and obtain the same expression as in (3.42).
A comparison of the predictions of the lubrication model with the corresponding ODE model for the strong-slip

case above, is illustrated in Fig. 1. Here we follow the evolution of the array of droplets and observe good agreement
except for the actual collapse events.

Finally, note that if we rescale the velocity or flux (3.53) by β, J = β JIS , where JIS denotes the flux in the inter-
mediate-slip case, and the time in (3.32a), (3.32b) by 1/β, then we recover the ODE model for the intermediate-slip
case in the limit β → 0. Moreover, our preliminary asymptotic studies, as well as numerical simulations, suggest
that further constant-flux regimes, for which the model (3.32a)–(3.34) remains valid, are possible for large β. Their
complete asymptotic investigation as well as their implications on the coarsening dynamics and rates is subject of
an upcoming paper.
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Fig. 1 Comparison of the results of the ODE model(dotted line) and the lubrication model (solid line) for the strong-slip case. Shown
are the evolution of droplet pressures until collapse of the second droplet (left), and until the collapse of the fourth droplet (right) with
β = 1, ε = 0.01, L = 100, Re = 0. Upper row shows the initial conditions for each collapse event

4 Coarsening dynamics for increasing slip lengths

4.1 Numerical methods

The numerical methods used in the preceding section and the following section are now briefly described. For
the numerical treatment of the lubrication models we used the scheme, developed in [29,39] with D. Peschka and
A. Münch [37]. It solves the lubrication models (1.1), (1.7) and (1.5) with the boundary conditions (2.1), and the
strong-slip model (1.6a)–(1.6b) with the boundary conditions (2.9)–(2.10). It is a fully implicit finite-difference
scheme on a general nonuniform mesh in space with adaptive time step. At every time step the nonlinear system
of algebraic equations is solved using Newton’s method. At every Newton iteration the resulting linear system of
algebraic equations is solved using LAPACK library.

The numerical solutions for the ODE models for the intermediate- and strong-slip models, i.e.,

dPk

dt
= CP (Pk)(Jk+1,k − Jk,k−1),

dXk

dt
= −CX (Pk)(Jk+1,k + Jk,k−1) (4.1)

where CP (Pk) and CX (Pk) are given by (3.11) and (3.12), respectively, for the intermediate-slip model and (3.11)
and (3.34), for the strong-slip model were obtained using a fourth-order adaptive time step Runge–Kutta method in
Matlab. The main difficulty was to calculate numerically the coefficients (3.11), (3.12) and (3.34). The algorithm
of their integration is explained in Appendix.

4.2 New coarsening effects

The numerical simulations of the lubrication models all confirmed the formation and the existence of coarsening
behavior for arrays of near-equilibrium droplets. We find that, while there are mainly quantitative differences for
the coarsening process for the intermediate-slip model in comparison to the known no-slip case, for the strong-slip
case some qualitative new effects of the coarsening process can be observed which do not have counterparts for the
no- and intermediate-slip models.

For negligible inertial terms and β of small to O(1)magnitude we show the existence of a critical value of the slip
parameter (4.6) at which the direction of the droplet migration changes. This and its consequences are investigated
numerically and analytically in Sect. 4.3.

Moreover, it was shown in [23,24] that in contrast to the Cahn–Hilliard equation, used to describe coarsening
processes such as phase separating binary alloys, the lubrication models describing coarsening arrays of droplets
demonstrate besides Ostwald ripening, i.e., droplet collapse, the existence of collisions of droplets as another coars-
ening mechanism. So far this component was known to be comparable with collapse only for the no-slip model.
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It was shown in [32] for the lubrication model (1.5) with mobility M(h) = hq , q > 0, that the collision component
is negligible for q < 3 and saturates for q > 3 becoming comparable with collapse. That means that for the
intermediate-slip case (1.7) the collision component of the coarsening process is negligible, while for the no-slip
case it is larger and comparable to the collapse component, but nevertheless it saturates for q > 3. In contrast we
will show in Sect. 4.4, that in the strong-slip case the collision component continuously increases and eventually
becomes dominant as β increases.

4.3 Slippage as a control parameter for migration

One of the characteristic properties of the weak-slip model (1.5) along with (1.1) and (1.7) is the following fact:
the droplet migrates always opposite to the effective applied flux; see in particular the detailed discussion in [32].
In the case of the kth droplet in the array of N droplets the effective flux applied on it is

Je f f = Jk+1 + Jk−1. (4.2)

The explanation of the property is straightforward from the migration equation (3.10) and the expression for
the motion coefficient (3.12). One observes that the integrands of numerator and denominator of (3.12) are always
positive because h̄(x, P) > hmin for all x and P and hence CX (P) > 0. Then from (3.10) it follows that the sign
of dX/dt is always opposite to the sign of (4.2).

In contrast, in the case of the strong-slip model the analysis of (3.32b) and (3.34) shows that a droplet can
migrate opposite or in the same direction of the applied effective flux (4.2), depending on the value of the slippage
parameter β. This fact is explained by the influence of the new term in the expression for (3.34), which is connected
with the presence of the Trouton viscosity term in the system (1.6a)–(1.6b).

Proposition 4.1 When ε and the pressure P of the droplet are sufficiently small, there exist a unique zero β =
βcrit(P, ε) � 1 of (3.34) as a function of β, which has the asymptotics:

βcrit = K ε log

(
2

3εP

)
+ o(ε); (4.3)

and such that the direction of the droplet migration is opposite (in the same direction as) the flux when β < βcrit

(β > βcrit).

Proof In Appendix we derive the asymptotic representations (A.20) and (A.19) for the integrals

I2,m =
L∫

−L

A(h̄, ∂x h̄, ∂xx h̄)(h̄ − hmin)
m dx (4.4)

and the approximation (A.15) for the integral

I1,1 =
L∫

−L

(
h̄ − hmin

)

h̄2
dx, (4.5)

as ε, P → 0. The expression (A.20) shows that the integral I2,1 is negative for sufficiently small ε and P . This in
turn implies that the denominator of the mobility coefficient (3.34) is positive. The second expression shows that
the integral I2,0 is positive for sufficiently small ε and P . From this and the fact that integral I1,1 is positive, because
h̄ > hmin > 0, existence and uniqueness of βcrit follows and it is given as

βcrit :=
∫ L
−L

h̄−hmin
h̄2 dx

∫ L
−L A(h̄, ∂x h̄, ∂xx h̄) dx

. (4.6)

This definition together with (A.15) and (A.19) for the integrals I1,1 and I2,m imply (4.3). 	
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Fig. 2 Migration of the middle droplet in the array of three droplets (upper-left plot) for different β. L = 80, ε = 0.01, Re = 0, P2 = 0.4

This migration effect is illustrated in Fig. 2. For a given array of three droplets βcrit for the middle one was calcu-
lated and then solutions of (3.32a), (3.32b) with three different values for the slip parameter β1 < β2 = βcrit < β3

were obtained. Note that in the case β = βcrit the middle droplet almost does not move. Using the formula (3.41)
and given parameters of the droplet array one can calculate that the effective flux applied on the middle droplet is
always negative. So in the case β < βcrit it moves opposite to the flux and in the case β > βcrit in the same direction
of the flux.

Additionally, we recall that for the no-slip model it was shown in [24] that collisions are typically observed for
a system of at least three droplets, when two bigger droplets are attracted by a smaller droplet in between. For
the strong-slip model (1.6a)–(1.6b) two-droplet collisions are typically admitted when β > βcrit . An example of a
two-droplet collision is shown in Fig. 3 with β = 1. It is a direct consequence of the fact that a droplet can migrate
in the same direction as the flux. We remark that in the case β < βcrit (see Fig. 3 with β = 0.1) the two-droplet
collision is not possible and the strong-slip model behaves just as (1.7).

4.4 Coarsening patterns for increasing slippage

In this section we consider the modeling example from [24] of a coarsening process involving initially ten droplets
[24, Figs. 1 and 10] and look how the coarsening scenario changes with slippage in comparison to the no-slip
case analyzed in the latter article. Starting from an initial array of ten droplets as shown in Fig. 4 we follow the
paths of the first eight droplets in time in Fig. 5, where we vary slippage while keeping ε = 0.1 fixed. Beginning
with the intermediate-slip regime and increasing slippage for the strong-slip regime we observe several changes
in coarsening behavior, first due to the existence of βcrit for every droplet in the array and second (also as a
consequence of the first fact) that migration and hence collision rates change with slippage in comparison with
collapse.

For every droplet in the array with initial pressure Pj one can calculate βcrit, j = βcrit(Pj ). In the example we
chose, the values for βcrit, j do not differ much from each other and are approximately contained in the interval
I = ([1.18, 1.3]). When slippage is below 1.18, all droplets move opposite to the flux, but the value of their mobility
coefficient in the reduced ODE goes to zero and hence migration rates also approach zero as β is increased. This
effect can be seen in Fig. 5 for β = 0.3 and β = 0.5. In the former case the first two coarsening effects are the
same as for the intermediate-slip case, namely first collapse of the 6th droplet and then collision of the 2nd and 3rd
ones. But in the case β = 0.5 migration becomes so slow that the 2nd and the 3rd drops can not collide, instead the
former one collapses first.
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Fig. 3 The evolution of three droplets for three different β with initial profile and parameters as in Fig. 2. The first and second column
correspond to middle and the end of the evolution of the droplets, respectively
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for all the coarsening
simulations in Fig. 5
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The next qualitative change in the coarsening behavior occurs when passing the critical interval I . We observe
that one droplet after another change their migration direction from opposite to the flux to the same direction of the
flux. For example in the case β = 1.25 smaller droplets (like the 2nd, 3rd, 6th and 7th) have already changed their
migration direction, but the bigger ones not. Nevertheless, we do not observe any change in coarsening events in
comparison with the case β = 0.5.

To see new events we need to increase slippage further. As a consequence the migration coefficients in the
reduced model increase and hence the migration rates. This, together with the fact that now all droplets migrate
in the same direction as the flux, considerably changes the coarsening events in our example. For example, when
β = 2 we see that both the 5th and 6th droplets migrate to the left, before they moved to each other together with
the 4th which now migrates to the right. Moreover, the 2nd and 3rd droplets do not attract each other anymore,
rather, the former one collides with the first droplet and this becomes the second coarsening event in our system.
The first one is collapse of the 6th droplet.

Increasing slippage even higher, here up to β = 3.5, we see that migration rates increase further, so that now the
4th and 5th droplet collide (first coarsening event now) before the 1st and 2nd ones and before the 6th collapses
(second coarsening event). In principle one could increase slippage further, so that one after the other coarsening
event changes from collapse to collision.

In summary we demonstrated that increasing slippage, here in the interval [0, 3.5], several different coarsening
behaviors for an initial droplet array can be distinguished. They illustrate that the existence of βcrit influences the
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Fig. 5 First two coarsening events in the initial array of 8 droplets for 6 different slip values: Intermediate-slip model, strong-slip model
with β = 0.3, β = 0.5, β = 1.25, β = 2, β = 3.5 (arranged from left to right and from top to bottom). The black part of the pattern
denotes the support of the droplets

coarsening dynamics by changing the direction of migration, migration rates, which decrease to zero when one
approaches the critical slippage interval I and that collisions become dominant after further increase of the slip
length.

4.5 Coarsening rates

As was shown in previous sections the value of the slip-length parameter β in the strong-slip regime considerably
influences the coarsening behavior of an initial system of droplets and the contribution of collision component
depending on how close this value is to the mean critical slip length of the system (at which all droplets almost
do not move and just collapse). Naturally, this fact should imply some dependence of the collision-dominated
coarsening rates on the value of the slip length.

In [23] the coarsening dynamics of initially well-separated systems of droplets which experience in general only
collapse-coarsening effects (so called collapse-dominated coarsening rates) was investigated and it was shown that
the statistical number of droplets N (t) in such a system changes in time according to

N (t) ∝ t−2/5. (4.7)

Furthermore, reference [33] considered the lubrication model (1.5) with mobility term M(h) = h and derived
the law (4.7) on the basis of the gradient flow structure of the equation. As the equation for the evolution of droplet
pressures is the same in the reduced models for all slip-regimes, it is natural to expect that the coarsening rate law
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Fig. 6 Coarsening rates for
the intermediate-slip
regime, strong-slip regime
with β = 0.2, β = 0.05 and
β = 0.01. The solid line
shows t−2/5 and agrees well
with the coarsening rate for
the intermediate-slip
regime, as it should. This
behavior is approached
again as β → 0
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for collapse-dominated systems does not depend on the chosen slip regime and is always given by (4.7). Moreover,
in [24] it was shown that for the 1D no-slip regime any initial system of droplets will coarsen according to (4.7)
independent of the proportional number of collision and collapse events during the coarsening process.

We simulated for various initial configurations and number of droplets N the coarsening dynamics of the inter-
mediate-slip regime and found (as was expected from the results of [32]) that the percentage of collisions is very
small. As is claimed in [32], the intermediate-slip regime is essentially collapse-dominated and hence coarsening
rates for it are given by (4.7).

We then solved the reduced system (3.32a), (3.32b) for the corresponding strong-slip model for the similar initial
distributions of droplets and values for the slip-length parameter β = 0.2, β = 0.05 and β = 0.01 using all times
the flux approximation (3.53) with (3.42). We observed firstly that the proportion of collisions becomes dominant
and increases with slippage. Secondly, the corresponding coarsening rates have slopes ∼ t−1/3 for β = 0.2 and
decrease to ∼ t−2/5 as shown in Fig. 6. Note, that for the chosen parameters ε and Pmean the formula (4.3) entails
that the mean critical slip-length parameter βcrit ≈ 0.01 and our chosen slip lengths β = 0.05, β = 0.2 are beyond
the critical values.

The analytical derivation and more precise analysis for the dependence of collision-dominated coarsening rates
on the slip length in the strong-slip regime is subject of our ongoing research.

5 Conclusions

We have derived reduced models that capture the slow-time migration of arrays of droplets driven by intermolec-
ular forces and analysed the influence of interfacial slippage. We distinguished several new qualitatively different
coarsening behaviors as the slip length is increased. Apart from the no-slip and intermediate-slip case, also the
strong-slip case shows migration direction of a droplet opposite to the flux, but for this case only below a critical
slip length βcrit . At this value the droplet will stop moving, and above this value the droplet will migrate in the
same direction as the flux. In future work, it would be interesting to examine the physical reason behind this change
of direction of migration. Certainly, it is connected with the additional Trouton-viscosity term, which may yield a
restoring stress in the lateral direction in the film connecting the droplets.

Along with this transition also the occurrence of the coarsening mechanisms, i.e., collapse and collision, change.
While for the no-slip, intermediate-slip and for the strong-slip case until the critical slip length, the collision com-
ponent becomes at most comparable to collapse, increasing slippage beyond βcrit collision component becomes
dominant. Additionally, the type of collision also changes; below βcrit it typically takes at least three droplets for
a collision event, where the smaller droplet in the middle vanishes. Above βcrit collisions of just two droplets are
typical owing to the fact that now the droplets move in the same direction as the flux.
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As a result of these different coarsening behaviours we have also illustrated that the coarsening patterns will take
completely different paths as the slip length is increased.

Interestingly, the experimental results by [14,15] for a system of copolymer (PS − b − PMMA) dewetting
autophobically from a layer of molecular brushes that coat a substrate (SiO2/Si), suggest that collisions of droplets
to be the cause of coarsening. Since these experimental studies are the only ones on this topic that we are aware
of, it would be interesting to revisit a system such as in [28], where we have already demonstrated the impact of
slippage in the early stages of the dewetting process. For the late stages one could compare coarsening rates as a
function of slippage by using different hydrophobic coatings such as used in [28]. Our present analysis would have
to be extended to the three-dimensional case.

All of the cases considered in this paper neglect inertial effects and the limiting cases of very large β. Comparison
with numerical solutions of the strong-slip lubrication model show that, if (3.13) is no longer satisfied, the approxi-
mations (3.11) and (3.34) cease to be valid for (1.6a)–(1.6b). Additionally, our preliminary numerical investigations
show that for example when σ 2Re = O(1), then qualitatively new droplet dynamics can be identified. The pressures
inside the droplets are no longer constant and have a complicated nonlinear structure. The two components of the
coarsening process, collision and collapse, still exist, but now also oscillatory behavior of droplet formation appears.
The question arises if for regimes, where σ 2Re � O(1), it is still possible to obtain reduced models for the late
phases of dewetting. This is subject of our ongoing studies.
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Appendix: convergence, numerical integration and asymptotics for the coefficients CP (P ) and CX(P )

Here we show that the coefficient functions in (3.11), (3.12), (3.33) and (3.34) converge and can be integrated
numerically. Below Ki , i = 1, . . . , 11 everywhere denote constants.

The contribution to the coefficient CP (P) to the leading order comes from the droplet core and we can neglect
the contribution from the ultrathin film when ε � 1. Therefore it can be calculated as in [23]:

CP (P) = 1

− ∫ L
−L ∂P h̄ dx

= 3P3

4A3 , (A.1)

where A = −√
2|U (ε)| is a droplet contact angle (see [23]).

For the coefficient CX (P) we have the formulas (3.12) or (3.34) which can be written as ratios of improper
integrals. In order to prove that these integrals converge, we need to prove that the integrals

I1,n :=
L∫

−L

(
h̄ − hmin

)n

h̄2
dx, I2,m :=

L∫

−L

A(h̄, ∂x h̄, ∂xx h̄)(h̄ − hmin)
m dx (A.2)

converge for all P ∈ (0, Pmax), where n = 1, 2 and m = 0, 1.
Let us start from I1,n . Using first integral R(h) given by (2.7) for the steady state equation (2.3a) one can change

variables in (A.2) and integrate both integrals over hmin ≤ h ≤ hmax:

I1,n = 2

hmax∫

hmin

(h − hmin)
n

h2
√

2R(h)
dh. (A.3)

These integrals are improper at both ends of the integration interval because R(hmin) = R(hmax) = 0. One can see
that R(h) is of a form:

R(h) = K1(h − hmin)
2(h − hmax)(h − hneg)

h3 , (A.4)
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where hneg < 0 is the third real root of R(h). Canceling h −hmin in the denominator and the numerator, the integral
becomes improper only at the end hmax

I1,n = K2

hmax∫

hmin

(h − hmin)
n−1

√
h(h − hmax)(h − hneg)

dh, (A.5)

We assure that I1,n converges by making a second change of variables in (A.5):

h = hmax cos(θ). (A.6)

Then we find from (A.5)

I1,n = K3

acos
(

hmin
hmax

)
∫

0

(cos(θ)− hmin/hmax)
n−1 cos(θ/2)√

cos(θ)(cos(θ)− hneg/hmax)
dθ. (A.7)

The last integral is proper and can be integrated by the three-point Gaussian quadrature.
Let us now calculate the second type of integrals, namely I2,m in (A.2). As before we use (2.7) to change variables

and integrate over hmin ≤ h ≤ hmax:

I2,m = 2

hmax∫

hmin

A(h, ∂x h, ∂xx h)(h − hmin)
m

√
2R(h)

dh (using (3.23), (2.3a)–(2.3b) and (2.7))

= 8

hmax∫

hmin

hmin(h − hmin)
m(�(h)− P)

h2
√

2R(h)
dh − 8

hmax∫

hmin

hmin (h − hmin)
m √

2R(h)

h3 dh.

=: 8hmin

(
I 1
2,m + I 2

2,m

)
(A.8)

The second integral I 2
2,m in (A.8) is a proper integral at both ends of the integration interval and therefore converges.

But the first integral I 1
2,m is improper at the both ends. Note that numerator �(h)− P is of the form

�(h)− P = K4(h − hmin)(h − hc)(h2 + a2)

h4 , (A.9)

where hc is given by (2.5) in Sect. 2 and a2 is the modulus of two conjugate complex roots of �(h) = P . Using
(A.4) and (A.9) one can simplify I 1

2,m as follows:

I 1
2,m = K5

hmax∫

hmin

(h − hmin)
m(h − hc)(h2 + a2)√

h9(h − hmax)(h − hneg)

dh. (A.10)

Hence I 1
2,m becomes proper at hmin. To make it proper at the right end hmax we use again trigonometric change of

variables (A.6) and proceed exactly as in case of I1,n above. It makes I 1
2,m a proper integral that can be integrated

by the three-point Gaussian quadrature.
We have in summary that both integral in (A.2) converge (in particularly does not depend on X (t)) and can be

calculated numerically. The numerical error of the calculation of (3.12) or (3.34) is algebraic in ε due to the usage
of truncated expansions (2.4) and (2.8) in powers of ε for hmin and hmax, respectively.

Besides the direct calculation of (A.2) one can estimate these integrals asymptotically in a limit P, ε → 0
following the similar approach in [24, Appendix]. Such asymtotics we use in the Sect. 4.2 for estimating of βcrit .
For such purposes we derive here the leading-order asymptotics of integrals I1,1 and I2,0 and prove that I2,0 > 0
and I2,1 < 0 for all sufficiently small P and ε.
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Applying the Taylor expansion to (2.7) in the neighborhoods of hmin and hmax one can obtain:

R(h) ∼
{ 1

2U ′′(hmin)(h − hmin)
2, h → hmin[

P − U ′(hmax)
]
(hmax − h), h → hmax

, (A.11)

Analogously one can show:

�(h)− P ∼ �(hmin)(h − hmin), h → hmin. (A.12)

To estimate I1,1, from (A.11) we note that for h → hmin the ratio (h − hmin)/
√

2R(h) approaches a positive
constant. Consequently, for hmin → 0, the factor 1/h2 makes the integrand relatively large there. This contribution,
along with the contribution for h → hmax leads to the estimate,

I1,1 ≈ 1√
U ′′(hmin)

hc∫

hmin

dh

h2 + 1√
2|P − U ′(hmax)|

hmax∫

hmin

h − hmin

h2
√

hmax − h
dh (A.13)

where hc given by (2.5) yields an effective cut-off for the influence of the behavior near hmin. Both integrals in
(A.13) can be integrated analytically. Denoting them I 1

1,1 and I 2
2,1, respectively, and expanding w.r.t. P, ε → 0 one

obtains to leading order:

I 1
1,1 ≈ K6 + O(εP); I 2

1,1 ≈ K7 log

(
2

3εP

)
+ K8 + O(εP), (A.14)

Hence the final asymptotics for I1,1 w.r.t. P, ε → 0 is of the form:

I1,1 ≈ K7 log

(
2

3εP

)
+ O(1) (A.15)

Let us now estimate the integral I2,0. To this end one needs to estimate integrals I 1
2,0 and I 2

2,0 in (A.8). For the

integral I 1
2,0 analogously to (A.13) and using (A.11), (A.12) and relation between (1.2), (1.3) from the Sect. 1 one

can write

I 1
2,0 =

hmax∫

hmin

�(h)− P

h2
√

2R(h)
dh ≈ √

�′(hmin)

hcen∫

hmin

dh

h2 + 1√
2|P − U ′(hmax)|

hmax∫

hmin

�(h)− P

h2
√

hmax − h
dh, (A.16)

where both integrals at the right-hand side can be integrated analytically. Again expanding the results in P, ε → 0
one obtains

I 1
2,0 ≈ K9

ε2 + O(εP), K9 > 1. (A.17)

For the integral I 2
2,0 one obtains:

I 2
2,0 =

hmax∫

hmin

√
2R(h)

h3 dh ≤ √
Rmax/2

(
1

h2
min

− 1

h2
max

)
= 1

6ε2 + O

(
P

ε

)
, (A.18)

where Rmax := R(hc) is a maximum of the positive function R(h) which is attained at hc. Finally from (A.17) and
(A.18) one obtains that the integral I2,0 is positive for sufficiently small P, ε and has the following asymptotics:

I2,0 ≈ K10

ε
+ O(1), K10 > 0. (A.19)

One should notice that a similar estimate can be applied to the integral I2,1. The only difference here is that the
integrand of I 1

2,1 is improper only at the end h = hmax while is zero at h = hmin. Hence the main contribution to

I 1
2,1 comes from h → hmax. The final asymptotics for I2,1 is of the form:

I2,1 ≈ K11 + O(εP), K11 < 0, (A.20)

and hence I2,1 is negative.
We summarize that (A.20) together with the fact that the integrals I1,n, n = 0, 1 defined in (A.2) are positive,

because h̄ > hmin > 0, implies that the denominator of the mobility coefficient is positive for sufficiently small ε
and P .
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